|
@@ -56,6 +56,15 @@ from .entities import (
|
|
|
LLMNodeData,
|
|
|
ModelConfig,
|
|
|
)
|
|
|
+from .exc import (
|
|
|
+ InvalidContextStructureError,
|
|
|
+ InvalidVariableTypeError,
|
|
|
+ LLMModeRequiredError,
|
|
|
+ LLMNodeError,
|
|
|
+ ModelNotExistError,
|
|
|
+ NoPromptFoundError,
|
|
|
+ VariableNotFoundError,
|
|
|
+)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
from core.file.models import File
|
|
@@ -115,7 +124,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
if self.node_data.memory:
|
|
|
query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
|
|
|
if not query:
|
|
|
- raise ValueError("Query not found")
|
|
|
+ raise VariableNotFoundError("Query not found")
|
|
|
query = query.text
|
|
|
else:
|
|
|
query = None
|
|
@@ -161,7 +170,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
usage = event.usage
|
|
|
finish_reason = event.finish_reason
|
|
|
break
|
|
|
- except Exception as e:
|
|
|
+ except LLMNodeError as e:
|
|
|
yield RunCompletedEvent(
|
|
|
run_result=NodeRunResult(
|
|
|
status=WorkflowNodeExecutionStatus.FAILED,
|
|
@@ -275,7 +284,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
variable_name = variable_selector.variable
|
|
|
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
|
|
|
if variable is None:
|
|
|
- raise ValueError(f"Variable {variable_selector.variable} not found")
|
|
|
+ raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
|
|
|
|
|
|
def parse_dict(input_dict: Mapping[str, Any]) -> str:
|
|
|
"""
|
|
@@ -325,7 +334,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
for variable_selector in variable_selectors:
|
|
|
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
|
|
|
if variable is None:
|
|
|
- raise ValueError(f"Variable {variable_selector.variable} not found")
|
|
|
+ raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
|
|
|
if isinstance(variable, NoneSegment):
|
|
|
inputs[variable_selector.variable] = ""
|
|
|
inputs[variable_selector.variable] = variable.to_object()
|
|
@@ -338,7 +347,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
for variable_selector in query_variable_selectors:
|
|
|
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
|
|
|
if variable is None:
|
|
|
- raise ValueError(f"Variable {variable_selector.variable} not found")
|
|
|
+ raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
|
|
|
if isinstance(variable, NoneSegment):
|
|
|
continue
|
|
|
inputs[variable_selector.variable] = variable.to_object()
|
|
@@ -355,7 +364,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
return variable.value
|
|
|
elif isinstance(variable, NoneSegment | ArrayAnySegment):
|
|
|
return []
|
|
|
- raise ValueError(f"Invalid variable type: {type(variable)}")
|
|
|
+ raise InvalidVariableTypeError(f"Invalid variable type: {type(variable)}")
|
|
|
|
|
|
def _fetch_context(self, node_data: LLMNodeData):
|
|
|
if not node_data.context.enabled:
|
|
@@ -376,7 +385,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
context_str += item + "\n"
|
|
|
else:
|
|
|
if "content" not in item:
|
|
|
- raise ValueError(f"Invalid context structure: {item}")
|
|
|
+ raise InvalidContextStructureError(f"Invalid context structure: {item}")
|
|
|
|
|
|
context_str += item["content"] + "\n"
|
|
|
|
|
@@ -441,7 +450,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
)
|
|
|
|
|
|
if provider_model is None:
|
|
|
- raise ValueError(f"Model {model_name} not exist.")
|
|
|
+ raise ModelNotExistError(f"Model {model_name} not exist.")
|
|
|
|
|
|
if provider_model.status == ModelStatus.NO_CONFIGURE:
|
|
|
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
|
|
@@ -460,12 +469,12 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
# get model mode
|
|
|
model_mode = node_data_model.mode
|
|
|
if not model_mode:
|
|
|
- raise ValueError("LLM mode is required.")
|
|
|
+ raise LLMModeRequiredError("LLM mode is required.")
|
|
|
|
|
|
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
|
|
|
|
|
|
if not model_schema:
|
|
|
- raise ValueError(f"Model {model_name} not exist.")
|
|
|
+ raise ModelNotExistError(f"Model {model_name} not exist.")
|
|
|
|
|
|
return model_instance, ModelConfigWithCredentialsEntity(
|
|
|
provider=provider_name,
|
|
@@ -564,7 +573,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
filtered_prompt_messages.append(prompt_message)
|
|
|
|
|
|
if not filtered_prompt_messages:
|
|
|
- raise ValueError(
|
|
|
+ raise NoPromptFoundError(
|
|
|
"No prompt found in the LLM configuration. "
|
|
|
"Please ensure a prompt is properly configured before proceeding."
|
|
|
)
|
|
@@ -636,7 +645,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|
|
variable_template_parser = VariableTemplateParser(template=prompt_template.text)
|
|
|
variable_selectors = variable_template_parser.extract_variable_selectors()
|
|
|
else:
|
|
|
- raise ValueError(f"Invalid prompt template type: {type(prompt_template)}")
|
|
|
+ raise InvalidVariableTypeError(f"Invalid prompt template type: {type(prompt_template)}")
|
|
|
|
|
|
variable_mapping = {}
|
|
|
for variable_selector in variable_selectors:
|