|
@@ -0,0 +1,148 @@
|
|
|
+// 导入proj控件,使用其方法注入gcj02坐标系
|
|
|
+import * as proj from 'ol/proj';
|
|
|
+
|
|
|
+var forEachPoint = function (func) {
|
|
|
+ return function (input, opt_output, opt_dimension) {
|
|
|
+ var len = input.length;
|
|
|
+ var dimension = opt_dimension ? opt_dimension : 2;
|
|
|
+ var output;
|
|
|
+ if (opt_output) {
|
|
|
+ output = opt_output;
|
|
|
+ } else {
|
|
|
+ if (dimension !== 2) {
|
|
|
+ output = input.slice();
|
|
|
+ } else {
|
|
|
+ output = new Array(len);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for (var offset = 0; offset < len; offset += dimension) {
|
|
|
+ func(input, output, offset);
|
|
|
+ }
|
|
|
+ return output;
|
|
|
+ };
|
|
|
+};
|
|
|
+var gcj02 = {};
|
|
|
+var i = 0;
|
|
|
+var PI = Math.PI;
|
|
|
+var AXIS = 6378245.0;
|
|
|
+var OFFSET = 0.00669342162296594323; // (a^2 - b^2) / a^2
|
|
|
+
|
|
|
+function delta(wgLon, wgLat) {
|
|
|
+ var dLat = transformLat(wgLon - 105.0, wgLat - 35.0);
|
|
|
+ var dLon = transformLon(wgLon - 105.0, wgLat - 35.0);
|
|
|
+ var radLat = (wgLat / 180.0) * PI;
|
|
|
+ var magic = Math.sin(radLat);
|
|
|
+ magic = 1 - OFFSET * magic * magic;
|
|
|
+ var sqrtMagic = Math.sqrt(magic);
|
|
|
+ dLat = (dLat * 180.0) / (((AXIS * (1 - OFFSET)) / (magic * sqrtMagic)) * PI);
|
|
|
+ dLon = (dLon * 180.0) / ((AXIS / sqrtMagic) * Math.cos(radLat) * PI);
|
|
|
+ return [dLon, dLat];
|
|
|
+}
|
|
|
+
|
|
|
+function outOfChina(lon, lat) {
|
|
|
+ if (lon < 72.004 || lon > 137.8347) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if (lat < 0.8293 || lat > 55.8271) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+function transformLat(x, y) {
|
|
|
+ var ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * Math.sqrt(Math.abs(x));
|
|
|
+ ret += ((20.0 * Math.sin(6.0 * x * PI) + 20.0 * Math.sin(2.0 * x * PI)) * 2.0) / 3.0;
|
|
|
+ ret += ((20.0 * Math.sin(y * PI) + 40.0 * Math.sin((y / 3.0) * PI)) * 2.0) / 3.0;
|
|
|
+ ret += ((160.0 * Math.sin((y / 12.0) * PI) + 320 * Math.sin((y * PI) / 30.0)) * 2.0) / 3.0;
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+function transformLon(x, y) {
|
|
|
+ var ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * Math.sqrt(Math.abs(x));
|
|
|
+ ret += ((20.0 * Math.sin(6.0 * x * PI) + 20.0 * Math.sin(2.0 * x * PI)) * 2.0) / 3.0;
|
|
|
+ ret += ((20.0 * Math.sin(x * PI) + 40.0 * Math.sin((x / 3.0) * PI)) * 2.0) / 3.0;
|
|
|
+ ret += ((150.0 * Math.sin((x / 12.0) * PI) + 300.0 * Math.sin((x / 30.0) * PI)) * 2.0) / 3.0;
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+gcj02.toWGS84 = forEachPoint(function (input, output, offset) {
|
|
|
+ var lng = input[offset];
|
|
|
+ var lat = input[offset + 1];
|
|
|
+ if (!outOfChina(lng, lat)) {
|
|
|
+ var deltaD = delta(lng, lat);
|
|
|
+ lng = lng - deltaD[0];
|
|
|
+ lat = lat - deltaD[1];
|
|
|
+ }
|
|
|
+ output[offset] = lng;
|
|
|
+ output[offset + 1] = lat;
|
|
|
+});
|
|
|
+
|
|
|
+gcj02.fromWGS84 = forEachPoint(function (input, output, offset) {
|
|
|
+ var lng = input[offset];
|
|
|
+ var lat = input[offset + 1];
|
|
|
+ if (!outOfChina(lng, lat)) {
|
|
|
+ var deltaD = delta(lng, lat);
|
|
|
+ lng = lng + deltaD[0];
|
|
|
+ lat = lat + deltaD[1];
|
|
|
+ }
|
|
|
+ output[offset] = lng;
|
|
|
+ output[offset + 1] = lat;
|
|
|
+});
|
|
|
+
|
|
|
+var sphericalMercator = {};
|
|
|
+
|
|
|
+var RADIUS = 6378137;
|
|
|
+var MAX_LATITUDE = 85.0511287798;
|
|
|
+var RAD_PER_DEG = Math.PI / 180;
|
|
|
+
|
|
|
+sphericalMercator.forward = forEachPoint(function (input, output, offset) {
|
|
|
+ var lat = Math.max(Math.min(MAX_LATITUDE, input[offset + 1]), -MAX_LATITUDE);
|
|
|
+ var sin = Math.sin(lat * RAD_PER_DEG);
|
|
|
+
|
|
|
+ output[offset] = RADIUS * input[offset] * RAD_PER_DEG;
|
|
|
+ output[offset + 1] = (RADIUS * Math.log((1 + sin) / (1 - sin))) / 2;
|
|
|
+});
|
|
|
+
|
|
|
+sphericalMercator.inverse = forEachPoint(function (input, output, offset) {
|
|
|
+ output[offset] = input[offset] / RADIUS / RAD_PER_DEG;
|
|
|
+ output[offset + 1] = (2 * Math.atan(Math.exp(input[offset + 1] / RADIUS)) - Math.PI / 2) / RAD_PER_DEG;
|
|
|
+});
|
|
|
+
|
|
|
+var projzh = {};
|
|
|
+projzh.ll2gmerc = function (input, opt_output, opt_dimension) {
|
|
|
+ let output = gcj02.fromWGS84(input, opt_output, opt_dimension);
|
|
|
+ return projzh.ll2smerc(output, output, opt_dimension);
|
|
|
+};
|
|
|
+projzh.gmerc2ll = function (input, opt_output, opt_dimension) {
|
|
|
+ let output = projzh.smerc2ll(input, input, opt_dimension);
|
|
|
+ return gcj02.toWGS84(output, opt_output, opt_dimension);
|
|
|
+};
|
|
|
+projzh.smerc2gmerc = function (input, opt_output, opt_dimension) {
|
|
|
+ let output = projzh.smerc2ll(input, input, opt_dimension);
|
|
|
+ output = gcj02.fromWGS84(output, output, opt_dimension);
|
|
|
+ return projzh.ll2smerc(output, output, opt_dimension);
|
|
|
+};
|
|
|
+projzh.gmerc2smerc = function (input, opt_output, opt_dimension) {
|
|
|
+ let output = projzh.smerc2ll(input, input, opt_dimension);
|
|
|
+ output = gcj02.toWGS84(output, output, opt_dimension);
|
|
|
+ return projzh.ll2smerc(output, output, opt_dimension);
|
|
|
+};
|
|
|
+
|
|
|
+projzh.ll2smerc = sphericalMercator.forward;
|
|
|
+projzh.smerc2ll = sphericalMercator.inverse;
|
|
|
+
|
|
|
+// 定义GCJ02
|
|
|
+const gcj02Extent = [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244];
|
|
|
+const gcj02Mecator = new proj.Projection({
|
|
|
+ code: 'GCJ-02',
|
|
|
+ extent: gcj02Extent,
|
|
|
+ units: 'm',
|
|
|
+});
|
|
|
+proj.addProjection(gcj02Mecator);
|
|
|
+// 将4326/3857转为gcj02坐标的方法定义
|
|
|
+proj.addCoordinateTransforms('EPSG:4326', gcj02Mecator, projzh.ll2gmerc, projzh.gmerc2ll);
|
|
|
+proj.addCoordinateTransforms('EPSG:3857', gcj02Mecator, projzh.smerc2gmerc, projzh.gmerc2smerc);
|
|
|
+
|
|
|
+// 我使用的react,所以这里需要导出定义的gcj02Mecator,提供给外部使用
|
|
|
+export default gcj02Mecator;
|
|
|
+
|